
AE598: Project Report

Inverse Reinforcement Learning over MDPS.

Vijeth Hebbar

May 12, 2022

1 Introduction

At the risk of over simplification, Reinforcement Learning (RL) can be viewed broadly as a method to arrive
at the optimal strategy to complete a given task with higher rewards being given for ‘good’ attempts and
low rewards for ‘bad’ ones. Specifically , ‘good quality’ actions taken by the learning agents are rewarded
well and ‘bad quality’ actions are penalized. Given the history of rewards obtained for each action1 the agent
then learns to perform actions that lead to larger overall rewards in subsequent attempts of solving the same
problem. Inverse Reinforcement Learning (IRL) on the other hand seeks to learn the rewards that an agent
must be receiving for every action given the optimal strategy for a particular problem. But this begs the
question of why one would wish to learn the rewards if we are already have the optimal strategy.

The first reason to learn the reward functions is to inherently understand the intent of the decision making
agent [1]. Learning the reward function for the agent can then allow us to model their behaviour in other
situations of a similar context. A simple example is that of recommender systems. An individual (who is an
expert on their own preferences) picks a series of songs over Spotify, which is then used by the app to form a
preference model of the individual. This model can then be used to design personalized song recommendations
catered to the individual. A closely related notion is the theory of revealed preferences in the economics
literature where the economic choices made by an individual are used to learn about their utilities [2]. Intent
learning also plays a very important role in human-robot interaction, where the robot can infer goals that the
human is trying to achieve and adapt its own strategy to achieve the joint goals better.

The second reason to use knowledge of optimal strategies to obtain reward functions is in the context of
apprenticeship learning i.e. using an expert’s knowledge to solve a problem by imitating their actions. While
one can simply learn the strategy of the expert at face value, reward functions are arguably a more succinct
and robust representation of a expert’s goals. Indeed under a change of dynamics, the knowledge of rewards
will allow the agent to re-compute their own optimal strategy, while blindly imitating the actions of the agent
(performed under different dynamics) may not likely produce optimal rewards. The primary domain of interest
for apprenticeship learning based IRL is robotics [3, 4].

While the problem of learning rewards from actions has been a long standing one in economics (as indicated
above) and control literature2, Ng and Russell [6] were among the first to study the problem of IRL in an
MDP setting. In their work, they begin by formalizing the IRL problem over a finite-state MDP and obtain
sufficient and necessary conditions that the reward function should satisfy for a given optimal policy. They

1The reward for the same action may be different at different states for the agent.
2As an example, the problem of learning the quadratic cost function for a linear system from the control history and state

trajectory was solved recently in [5]

1

then consider the case of infinite state MDPs, as well as the problem of IRL when trajectory realizations of the
optimal policy are provided rather than the policy themselves. In this latter portion of their work they restrict
the search for reward functions over linear approximations using finite basis functions. Many extensions have
been proposed that do away with such approximations and instead look at distributions over the space of
reward functions [7, 8]. A larger survey of IRL problems over MDPs is contained in [9].

In this review, we will begin by taking a close look at the IRL problem over finite state MDPs broadly
following the work in [6] in Section 3. In doing so, we will construct a simple example MDP problem (Section
3.3) for which we will learn the reward function given an optimal policy. We will then look more closely at
the IRL problem where trajectories generated by the optimal policy are given rather than the policy itself in
Section 4. We consider an example(Section 4.4), wherein an agent observes an expert moving from one point
to another on a grid with stochastic dynamics. The agent then learns the reward function for the expert using
the latter’s sampled trajectories. The approach we employ to do so is heuristic and easy to implement but
lacks performance guarantees[6].

2 Preliminaries and Notation

As a first step, let us develop a framework to solve the problem of Inverse Reinforcement Learning in finite
state space. We denote an MDP as the tuple {S,A, P, γ,R} where

1. S is the set of N states. We denote the states simply as {1, 2, . . . , N}.

2. A = {a1, . . . , ak} is the set of k actions available at every state.

3. P : S × A × S → [0, 1] is the probability transition function with P (s, a, s′) denoting the probability of
transitioning from state s to s′ on taking action a.

4. γ ∈ [0, 1) is the discount factor for rewards.

5. And R : S ×A → R is the reward function for the MDP.

First we make

Assumption 1 We will assume that the reward achieved at any state in independent of the action. So going
forward we will denote rewards as R(s) instead of R(s, a).

This assumption is not particularly restrictive as will be shown later, and assumption itself allows for easier
exposition.

For every policy π : S → A we can define the value function at any state s0 as

V π(s0) = E[R(s0) + γR(s1) + . . . |π]

where (s0s1s2) is the sequence of states the MDP attains under the execution of policy π. This can be written
concisely as

V π(s0) = R(s0) + γ
∑
s′∈S

P (s0, π(s0), s
′)V π(s′). (1)

We also define the Q-function as

Qπ(s0, a) = R(s0) + γ
∑
s′∈S

P (s0, a, s
′)V π(s′). (2)

Note that in addition to the dependence of Q on action a, it also depends on the policy π as the value function
V π(·) depends on π. We will state without proof Bellman’s principal of optimality as it applies to our MDP.

2

Theorem 2.1 π is an optimal policy for our MDP, if and only if

π(s) = argmax
a∈A

Qπ(s, a) ∀s ∈ S. (3)

Before we move on to formulating the IRL problem, we present some additional notation that will come
in handy later. Since we are considering finite state spaces we can denote the value function and the reward
function as N dimensional vectors. We define vectors Vπ and R whose ith elements are V π(i) and R(i)
respectively. Extending this idea, we can represent the probability transition function as a set of matrices
{Pa}a∈A where

[Pa]ij = P (i, a, j).

Finally, we use the notation ≻ and ⪰ to denote element-wise vector inequalities. Specifically, for two vectors
X = [x1 x2 . . . xN]T and Y = [y1 y2 . . . yN]T , X ⪰ Y if and only if xi ≥ yi for every i.

3 Inverse Reinforcement Learning from Optimal Policy

Let π∗ denote the optimal policy for some unknown reward vector R∗. Now the inverse reinforcement learning
problem can be stated informally as

“obtain an estimate R̂ of the reward vector that generated the optimal policy π∗ given the
MDP parameters (S,A, P, γ).”

Before we attempt to analytically tackle this problem, we make the following

Assumption 2
π∗(s) = a1 ∀s ∈ S.

Note that this assumption is WLOG as this condition can indeed be achieved for an arbitrary policy by
interchanging the index of actions at every state such that the optimal action is indeed a1.

3.1 Sufficient and Necessary Conditions for the Solution Set.

Let us now try to characterize the set of reward functions that ‘satisfy’ a certain optimal policy. We present
the following

Theorem 3.1 The policy π∗(s) ≡ a1 is optimal for the reward vector R if and only if

(Pa1 −Pa)(I− γPa1)
−1R ⪰ 0 ∀a ∈ A (4)

where I denotes the identity matrix.

To prove this theorem we will employ without proof the following result about convergence of the Neumann
series.

Lemma 3.1 (I −M) is invertible if ρ(M) < 1 where ρ denotes the spectral radius of a matrix and the inverse
is then given by the convergent (in matrix norm) series

∞∑
i=0

M i

.

3

Proof of Theorem 3.1 Using the vector notations introduced earlier we first rewrite (1) for π∗ as

Vπ∗
= R+ γPa1V

π∗

=⇒ Vπ∗
= (I− γPa1)

−1R (5)

where the inevitability of (I−γPa1) is guaranteed by Lemme 3.1 and the fact that ρ(γPa) = |γ|ρ(Pa) = γ < 1
because the largest eigenvalue of a stochastic matrix is 1. Then for π∗ to be the optimal policy using the (3)
we obtain the fact that

Qπ∗
(s, a1) ≥ Qπ∗

(s, a) ∀s ∈ S, ∀a ∈ A

⇐⇒
∑
s′∈S

P (s0, a1, s
′)V π(s′) ≥

∑
s′∈S

P (s0, a, s
′)V π(s′) ∀s ∈ S,∀a ∈ A (Using (2).)

⇐⇒ Pa1V
π∗ ⪰ PaV

π∗ ∀a ∈ A
⇐⇒ (Pa1 −Pa)(I− γPa1)

−1R ⪰ 0 ∀a ∈ A

where the final step above uses (5) to substitute the value of Vπ∗
.

Note that condition (4) obtained above is a sufficient and necessary condition and thus completely char-
acterizes the solution set of the IRL problem. But this immediately presents the problem that the solution
of (4) is not unique. Indeed any constant vector of rewards (and trivially, the zero vector) is admissible to
the solution set. This can be informally understood by nothing that if the rewards at every state were the
same, the total reward collected at the end of any finite number of steps is always the same irrespective of the
path taken and so every policy is optimal. So a constant reward vector must always be admissible in the IRL
solution set for any optimal policy. To see this formally we again invoke Lemma 3.1 to rewrite (4) as

(Pa1 −Pa)
∞∑
i=0

γiPi
a1R ⪰ 0.

Taking R = r1, where 1 is the vector of ones, we have

(Pa1 −Pa)
∞∑
i=0

γiPi
a1r1 = (Pa1 −Pa)1

r

1− γ
= (1− 1)

r

1− γ
= 0

where 0 is the vector of zeros. Above we used the fact that 1 is an eigenvector of an stochastic matrix with
eigenvalue 1.

In all this we have shown that the inverse reinforcement problem as we stated above is ill-posed and has
a non-unique solution. This indicates that to obtain a reward vector we may need to employ some heuristics
to pick one of the reward vectors from the admissible set satisfying (4). One work around would be to replace
the inequality in 4 with a strict inequality. Here we can state the corollary.

Corollary 3.1 The policy π∗(s) ≡ a1 is the unique optimal policy for the reward vector R if and only if

(Pa1 −Pa)(I− γPa1)
−1R ≻ 0 ∀a ∈ A (6)

where I denotes the identity matrix.

But this again does not guarantee uniqueness of the reward vector solution as for every solution R to (6),
aR+ b1 is also a solution for all a > 0, b.

As a solution to this ill-posedness we will provide some heuristics that allows us to pick a unique reward
vector amongst this solution set stemming from (4) in the following section. But before we go there, we end

4

this section by commenting on the ramifications of Assumption 1. Suppose instead that we considered reward
function of the form R(s, a) and defined the set of reward vectors {Ra1 ,Ra2 , . . . ,Rak}, where Ra1 is an N -
dimensional vector containing the rewards obtained at each state on taking action a1. Then much the same
way we obtained Theorem 3.1, we can obtain

Corollary 3.2 The policy π∗(s) ≡ a1 is optimal for the set of reward vectors {Ra1 ,Ra2 , . . . ,Rak} if and
only if

(Ra1 −Ra) + (Pa1 −Pa)(I− γPa1)
−1Ra1 ⪰ 0 ∀a ∈ A (7)

where I denotes the identity matrix.

For a solution to (7), we can first take any reward vector that solves (4) and set it as the value of Ra1 . Then
Ra for any a ∈ A \ {a1} can be chosen satisfying Ra1 ⪰ Ra. Here we are trying to obtain rewards for actions
that do not form a part of optimal policy. Realistically speaking, we cannot know anything about the rewards
of actions that are never played (apart from maybe the fact that they must be dominated by the rewards from
the corresponding optimal actions). So we see that we can do no better by doing away with Assumption 1.

3.2 Heuristic Method to Obtain Reward Vector

Let us consider the set of reward vectors that comprise solutions to (4). Clearly some of these rewards would
be more ‘meaningful’ than others (say, compared the to zero vector, for instance). To pick such a ‘meaningful’
vector we employ heuristics.

1. We may want to pick the reward vector such that any other policy is strongly suboptimal compared to
the given optimal policy. Heuristically this could be done by picking the R such that∑

s∈S

(
Qπ∗

(s, a1)− max
a∈A\a1

Qπ∗
(s, a)

)
is maximized. This could be rewritten as

max
N∑
1

min
a∈A\a1

(Pa1(i)−Pa(i))V
π∗

(8)

where Pa(i) denotes the ith row of Pa.

2. The second heuristic we may employ is to want a ‘simple’ enough reward. We may model a ‘simple’
reward as the one having a small overall magnitude and can look for rewards with a small ||R||1. We can
do so by adding a −λ||R|| regularization term to the maximization in (8). But here we must be careful
as we know that R = 0 is always a solution (4). So taking too large a value of λ will force a solution of
R = 0.

We can put together the two heuristics and provide the following optimization problem for obtaining the
rewards vector.

max
R

N∑
1

min
a∈A\a1

{
(Pa1 −Pa)(I− γPa1)

−1R

}
− λ||R||1 (9)

S.T (Pa1 −Pa)(I− γPa1)
−1R ∀a ∈ A \ a1 (10)

|Ri| ≤ Rmax ∀i ∈ {1, . . . , N} (11)

5

where the first term in the objective is obtained by substituting (5) in (8) and the last line of constraints
is enforces compactness of the constraint set. The summands in the first term in the objective are point-
wise minimums of linear functions, and thus, concave. The concavity of the second term is apparent from
the triangle inequality property of norms. Noting that summation preserves concavity, it is easy to see that
the objective function is concave. Moreover the constraints sets are compact and convex. The optimization
problem can be easily solved using any convex optimization solver3.

3.3 Simple Example

Let us apply the the theory developed thus far to a very simple problem. Consider the MDP illustrated in
Figure 1.

1

2

3

0.1

0.9
1

0.1 0.9

0.9

0.1

1

1

Figure 1: A simple 3 state, 2 action MDP. The true reward vector R∗ is [−1,−1, 0]. We pick γ = 0.9.

The state and action space of the problem above is given by

S = {1, 2, 3}, A = {R,B}.

We can define the state transition function using the matrices

PB =

0 1 0
0 0.1 0.9
0 0 1

 , PR =

 0 0.9 0.1
0.1 0 0.9
0 0 1

 .

And let us suppose the true rewards at each state are given by R(1) = R(2) = −1 and R(3) = 0. It can be
easily shown than for γ = 0.9 the optimal policy is given by,

π∗(1) = R, π∗(2) = B, π∗(3) = R.4

Let us now set out to obtain the reward function from this optimal policy by optimizing (9) subject to (10)
and (11). But before we do so to fit in with the modelling in our work thus far, we need to re-order the actions
in the optimal policy to make them all have the same index. In the context of this example, this means that
we need to interchange the roles of the R and B actions at state 2 to make action R optimal at all states. This
amounts to replacing the second row in PR from PB giving us

P′
B =

 0 1 0
0.1 0 0.9
0 0 1

 , P′
R =

0 0.9 0.1
0 0.1 0.9
0 0 1

 .

3This is an erratum in [6], where they claim that this optimization is a linear program.
4Clearly, both actions are optimal. We pick R WLOG.

6

Using (4) we can obtain the necessary and sufficient condition our reward vector R = [r1 r2 r3]
T must

satisfy as
(P′

R −P′
B)(I− γP′

R)
−1R ⪰ 0.

This gives us the following constraint equations:

0.11(r3 − r2) ≥ 0

0.07r2 + 0.03r3 − 0.1r1 ≥ 0

As a quick sanity check we can check that the true reward function does indeed satisfy these constraints. We
now write out the optimization problem specified as (9-11) for our problem as,

max 0.11(r3 − r2) + 0.07r2 + 0.03r3 − 0.1r1 − λ(|r1|+ |r2|+ |r3|)
S.T 0 ≤ r3 − r2

0 ≤ 0.7r2 + 0.3r3 − r1

|ri| ≤ 1.

This was solved using CVXPY, a basic convex optimization package in Python, to yield a solution of

R = [0, 0, 0.38]T

for a λ value of 0.13. Larger values of λ return the zero reward vector.
Unsurprisingly the heuristic optimization approach was not effective in obtaining the the true reward

function, but this is purely because the true reward R∗ did not in-fact agree with our second heuristic that the
reward should have a small magnitude. But nonetheless, our simple example illustrates that despite not being
able to obtain the true reward we picked out the qualitative features of the reward that capture the intent of
the expert agent. The reward vector we picked was characteristic of the problem of reaching the end goal in
minimum expected time. The reward vector we obtained from the optimization had the same feature of ‘get
to state 3 in minimum time to get the most reward(∵ γ < 1)’. Moreover, it can be easily seen that the optimal
policy from this and the true reward are identical.

3.4 IRL problem for Infinite State Space MDPs.

Here we will not dive deep into the details of an extension of the solution approach above into infinite state
space MDPs, but will address the primary challenges involved in doing so. We also highlight some simple
heuristics to address these challenges. We will now do away the vector notation for Vπ,R and Pa that we
introduced earlier and consider a MDP where the state space S is an infinite (possibly, uncountable) set. For
convenience, let us assume S = Rn. Again our problem statement is -

“obtain an estimate R(s) of the reward function that generated the optimal policy π∗ given the
MDP parameters (S,A, P, γ).”

The true reward function is now a mapping from Rn → R, and so any approach similar to the one discussed
for finite state IRL problem would involve optimizing over the space of functions. To avoid the difficulties of
optimizing in infinite dimensional spaces we will perform the standard trick of restricting search to a finite
dimensional subspace of the function space. This will be the first heuristic we apply.

Let us consider a finite set of known, bounded basis functions {ϕ1, . . . , ϕd} mapping from S → R. We now
search for an reward function that can be approximated as

R(s) =
d∑
1

αiϕi(s). (12)

7

Thus we have reduced our search space for the reward function from the function space to the finite set of
parameters {αi}di=1. Let us now define the ‘basis’ value function V π

i for policy π as the value function obtained
when the rewards function is simply R(s) = ϕi(s). Then for any reward function represented as (12), by
linearity of expectation, the value of any policy π is given by

V π =

d∑
1

αiV
π
i . (13)

We state without claim a sufficient and necessary condition for the optimality of a policy π as

Es′∼P (s,a1,·)[V
π(s′)] ≥ Es′∼P (s,a,·)[V

π(s′)] (14)

for every s ∈ S and every a ∈ A \ a1. The process to obtain this condition is similar to the one outlined in
Proof of Theorem 3.1.

There are multiple challenges here in evaluating (14).

C-I: Firstly, because we want (14) to hold for every state s, we need to check infinitely many constraints. A
heuristic would be to check (14) at only a finite set S0 of s states. Another possible heuristic would be
to consider a distribution D over the set of states S. Then we evaluate the single constraint,

Es∼D

[
Es′∼P (s,a1,·)[V

π(s′)]

]
≥ Es∼D

[
Es′∼P (s,a,·)[V

π(s′)]

]
. (15)

A distribution D that places larger weights on some of the states than others encourages the search for
a reward function such that these ‘high weight’ states satisfy (14).

C-II: Secondly, to evaluate the expectations in (14) we need to have functional forms of V π(s). Since we will
evaluate this function as a linear approximation using (13), we in turn need to have a functional form for
each of the V π

i ’s. This is simply a problem of evaluating the value of a policy, which is made complicated
in infinite state space. One way to get around this is to approximate the value function, say by using
Monte Carlo simulation runs using policy π and averaging the discounted rewards collected over multiple
runs.

C-III: The third problem is that our basis functions may not be chosen well and so no reward function that
results in policy π∗ may even be representable as a linear combination of these functions. In such a case,
our heuristic would be to allow some constraint violation by paying a penalty.

C-IV: Finally, even if we were to able to evaluate the feasibility of a set of rewards that satisfy (14) (under
the heuristics employed above) we need to come up with a way to pick a ‘good’ reward function from
amongst these, similar to the optimization in (9-11).

[6] provides one heuristic approach to address all these concerns but we will not go into the specifics of
that. Instead in the following section, we will employ some of the heuristics discussed here to solve the problem
of estimating rewards from sampled trajectories resulting from an optimal policy rather than from the policy
itself.

4 Inverse Reinforcement Learning from Sampled Trajectories.

In this section, we will continue to allow infinite state spaces but make a simplifying assumption to avoid some
of the issue we discussed in the previous section.

8

Assumption 3 We will assume that the initial state for our IRL problem is fixed and that the expert agent
takes all trajectories beginning from a fixed state s0 = s̄.

Let us suppose we are given M trajectories taken by the expert agent who is implementing some (unknown)
policy π∗. Note that by a trajectory, here we mean the time history of a states {(st)}Tt=0 where st denotes the
state at time t and T is the time horizon for the trajectory. Our goal then is as follows:

“obtain an estimate R(s) of the reward function that generated the M trajectories (as the
result of an optimal policy) given the MDP parameters (S,A, P, γ).”

To solve this problem we will consider a similar necessary5 condition that our policy must satisfy.

The Big Idea

Consider a set of policies {π1}k1. Then for π∗ to be an optimal policy for our problem our reward function
must be such that

V π∗
(s̄) ≥ V π(s̄) ∀π ∈ {π1}k1. (16)

A primary challenge that needs to be addressed here is that of computing these V π∗
(s̄) when the policy

itself is unknown. But before we address this challenge let us step back and present some additional notation
to help us out.

4.1 Preliminaries and Notations

We will continue with the linear approximation for the reward function as

R(s) =

d∑
1

αiϕi(s) = α · ϕ(s). (17)

where α ∈ Rd is the weight vector and ϕ(s) is the vector function with elements comprising of the d basis
functions {ϕi(s)}di=1. Then given any policy π we can obtain the value function at state s̄ using (17) as,

V π(s̄) = E[R(s0 = s̄) + γR(s1) + γ2R(s2) + . . . |π]
= α ·E[ϕ(s0) + γϕ(s1) + . . .]

= α · [V π
1 (s̄) . . . V π

d (s̄)]T

where V π
i (s̄) is the value function for the policy π evaluated at state s̄ when the true reward function is given

by ϕi(s). We define the vector

µ(π) ≜ [V π
1 (s̄) . . . V π

d (s̄)]T

giving us the simple representation for V π(s̄) = α ·µ(π). Then the problem of evaluating (16) can be written
as

α · (µ(π∗)− µ(πi)) ≥ 0∀i ∈ {1, . . . , k}. (18)

As we noted above a challenge we are faced with in evaluating (18) is in the evaluation of value function of
each policy to compute the vectors µ. We will approximate these value function using samples.

5Note that (16) is not a sufficient condition. For instance, we actually need (16) to hold for every state s and not just for the
initial state s̄ for π∗ to be an optimal policy.

9

4.2 Approximating the Value Function

The approaches we discuss is be slightly different for evaluating π∗ and for any other policy π. Recall that the
policy π∗ is in fact unknown and all we have are access to M state trajectories of horizon length T . Then a

natural approximation of the value function V
π∗(s̄)
i is obtained as

V̂ π∗
i (s̄) =

1

M

M∑
j=1

T∑
t=0

γtϕi(st) ∀i ∈ {1, . . . , d}.

This can then be used to estimate µ(π∗) as µ̂(π∗) = [V̂ π∗
1 (s̄), . . . , V̂ π∗

d (s̄)]. To evaluate any other policy π
we can simply run Monte-Carlo simulations starting from state s̄ in every iteration and by generating actions
according to policy π at every state. Let us suppose we run N iterations each with time horizon length τ .
Then we estimate the value of a policy π as

V̂ π
i (s̄) =

1

N

N∑
j=1

τ∑
t=0

γtϕi(st) ∀i ∈ {1, . . . , d}.

Once again we obtain µ̂(π) = [V̂ π
1 (s̄), . . . , V̂ π

d (s̄)].

4.3 Obtaining the Reward Function

We are now equipped to present an algorithmic approach to obtain the reward function that relies on the big
idea in (16). The steps involved are as follows-

Step-1: Pick a random policy π(0) and estimate µ̂(π(0)) as highlighted above. We will also maintain a list of
policies initialized Π = {π(0)}. Set i = 1.

Step-2: Evaluate

α(i) = argmax
α

α
∑
π∈Π

l
(
α · (µ̂(π∗)− µ̂(πi))

)
(19)

S.T |αj | ≤ 1 j = 1, . . . , d (20)

where µ̂(π∗) and µ̂(π) are estimated as highlighted in Section 4.2.

Step-3: Using any method obtain the optimal policy π(i) for our MDP with reward function R(s) = α(i)ϕ(s).

Step-4: Add π(i) to π. Set i = i+ 1 and repeat from step 2.

Above we have not indicated the termination criteria but any criteria may be used. One heuristic maybe
to check whether minπ∈Πα · (µ̂(π∗)− µ̂(πi)) ≤ ϵ after Step 3. In this case, optimal policy for the true reward
function does not perform far worse than the optimal policy for the particular reward function. So it is likely
that we found the true reward function itself.

Note that the function l : R → R in (19) is a simple loss function used to penalize constraint deviations
according to the heuristic described in C-III in Section 3.4. In the simulations we perform subsequently, we
use the following form for the loss function.

l(x) =

{
x x ≥ 0

2x x < 0

In the following section we consider a simple finite-state space MDP as an example, and attempt to recover
the true reward functions from a set of state trajectories that were obtained on implementing the optimal
policy.

10

4.4 Example

We consider the problem of traversing over a grid as shown in Figure 2.

Figure 2: A simple 7× 7 grid where the red state is the goal and blue state is the initial state.

The agent’s goal is to move from the blue tile to the red tile in as little time as possible. The dynamics are
simple: the agent can attempt to move one step in any of the four cardinal directions (except at the border
tiles, where the agent cannot attempt to move across the border, so it has fewer directions available). With
probability 0.75, the agent will succeed. With probability 0.25/(n− 1) for each direction, it will instead move
in a different cardinal direction, where n is the number of cardinal directions available to the agent (e.g., for
agents that are not at the border, n = 4). We assume that the red state is absorbing.

Let us index the 49 states in our system as {1, . . . , 49}. We use the natural set of basis functions for our
reward function as {ϕi(s)}49i=1 with each function defined as

ϕi(s) =

{
1 s = i

0 otherwise

It is easy to see then that the vector α is nothing but a set of rewards at each of the finite states. The true
optimal policy π∗ can easily be obtained for this problem using a value iteration based approach. We assume
access to M = 50 trajectories each having time horizon T = 20 and use these trajectories to estimate µ̂(π∗).
Likewise we run Monte Carlo simulations with N = 50 and τ = 20 to estimate µ̂(π) for any policy π.

We run the algorithm described in Section 4.3 over 18 iterations and the results are plotted below. Figure
3 showcases the change in estimated reward function across iterations. A GIF (titled, ‘reward learning.gif’)
file showing the process of learning the reward function is also attached with this report. We observe that as
we get closer to the end of iterations the reward resembles the true reward closely. At the same time, as we
had in the example from 3.3 the reward is not learnt perfectly, but the qualitative features of the true reward
are captured.

We can also evaluate some metrics on the optimal policies π(i)’s that are generated during the algorithm
presented Section 4.3. Specifically we are interested in the value of the policies evaluated with respect to the
true reward function (Figure 4a). We see that as the number of iterations progress the policy starts behaving
near optimally despite differing from the true optimal in a few states. This is likely because the algorithm
quickly learns about the best action to be taken at the states which occur in the experts trajectories. Given
the nature of the problem, it is unlikely that every state will be visited in a path between the blue and the red
states (Figure 2). So even if the optimal policy is not perfectly learnt for the some states it is likely that these

11

states are never visited in trying to achieve the goal of maximizing our rewards. Figure 4b tracks the number
of states at which the policy pi(i) differs from the true optimal policy across iterations.

(a) Rewards at every state after 1 step
of the iteration

(b) Rewards at every state after 12 step
of the iteration

(c) Rewards at every state after 18 step
of the iteration

Figure 3: (Estimated rewards across iterations.) We see that initially our reward estimates are extremely
poor but with iterations of our algorithm, our reward function matches the true reward function very closely.

(a) True value of the policy in every iteration.
(b) Number of states where the policy from an iteration
deviates from the optimal policy.

Figure 4: (Quality of the policy π(i) generated over iterations.)

5 Discussion

Through our first example in Section 3.3 we saw that despite not being able to perfectly recover the reward
vector, we obtained a reward that qualitative captured all aspects of the true reward. In particular, both the
true and the estimated reward correspond to a minimum time reachability problem. In this sense, it capture
our goal of being able to understand the intent of the agent that implemented the original optimal policy.
More over one can imagine that the computed reward function will work as well as the true one, if we wished
to compute the optimal policy in the event the dynamics of the system changed. Thus, we have been able to

12

accomplish both the goals - intent learning and apprenticeship learning - we desired when we motivated the
study of this problem.

While these features maybe be more pronounced in our simple example, the success of our approach in
the second example in Section 4.4 seems to further strengthen our claim to fame. Indeed even in the second
example, where we learnt the rewards with a good degree of success, we have shown that not only can we
perform the task of inverse reinforcement learning in a more complicated problem, but that we can do so with
a fairly small number (M = 50) of sampled trajectory realization of the optimal policy.

But note that both the examples we worked with assumed a finite state space, and there are still many
challenges involved in dealing with infinite state spaces as highlighted in Section 3.4. In addition, we can
extend the present work in multiple ways. A non-exhaustive list is presented below.

1. So far we assumed perfect observability but we can also consider the problem of IRL over Partially
Observable MDPs (POMDPs). In doing so we would have to work with the uncountable belief space
and thus many of the issues pertaining to the infinite state spaces crop up.

2. In considering sampled trajectories, we assumed that the ‘expert’ was perfect in their ability to act
according to the optimal policy. But in reality the expert may only be near-optimal in their decision
making. Considering such sub-optimality is another direction that can be explored.

3. Finally, in our approach to exploit the sampled trajectories to obtain the reward function, we gave no
performance guarantees on how close our estimate was to the true reward, or on how many samples we
would need to be able get a close enough estimate.

On the last matter raised above, Abbeel and Ng [3] consider an optimization problem different from the one
in (19-20) which converts the problem of finding the vector α into that of finding a separating hyperplane for
two convex sets. By doing so, they are also able to provide some of the guarantees on performance discussed
in the last point above.

In addition to the issues raised above, an overarching issue in the methods described in this work was
outlined in C-III in Section 3.4. Indeed approximating the true reward function using an element from a finite
dimensional subspace of the function space may not always be possible. As a solution to this issue, many
works [7, 8] seek to work with probability distributions over the space of reward functions. Then, given the
sample of optimal (or near-optimal) trajectories, these approaches form posterior distributions on the reward
function space. The true reward is then usually estimated as the mean of posterior distribution. A larger
survey of IRL problems cane be found in [9].

References

[1] Julian Jara-Ettinger. Theory of mind as inverse reinforcement learning. Current Opinion in Behavioral
Sciences, 29:105–110, 2019.

[2] Rust John. Maximum likelihood estimation of discrete control processes. SIAM journal on control and
optimization, 26(5):1006–1024, 1988.

[3] Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning. In Proceedings
of the twenty-first international conference on Machine learning, page 1, 2004.

[4] Christopher G. Atkeson and Stefan Schaal. Robot learning from demonstration. In ICML, pages 12 – 20,
1997.

[5] Stephen Boyd, Laurent El Ghaoui, Eric Feron, and Venkataramanan Balakrishnan. Linear matrix inequal-
ities in system and control theory. SIAM, 1994.

13

[6] Andrew Y Ng, Stuart J Russell, et al. Algorithms for inverse reinforcement learning. In ICML, volume 1,
page 2, 2000.

[7] Deepak Ramachandran and Eyal Amir. Bayesian inverse reinforcement learning. In IJCAI, volume 7, pages
2586–2591, 2007.

[8] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al. Maximum entropy inverse
reinforcement learning. In AAAI, volume 8, pages 1433–1438. Chicago, IL, USA, 2008.

[9] Shao Zhifei and Er Meng Joo. A survey of inverse reinforcement learning techniques. International Journal
of Intelligent Computing and Cybernetics, 2012.

14

